Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus

نویسندگان

  • Mingsheng Long
  • Anyuan Gao
  • Peng Wang
  • Hui Xia
  • Claudia Ott
  • Chen Pan
  • Yajun Fu
  • Erfu Liu
  • Xiaoshuang Chen
  • Wei Lu
  • Tom Nilges
  • Jianbin Xu
  • Xiaomu Wang
  • Weida Hu
  • Feng Miao
چکیده

The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 109 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/f noise in photonic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys.

Black phosphorus (b-P) and more recently black phosphorus-arsenic alloys (b-PAs) are candidate 2D materials for the detection of mid-wave and potentially long-wave infrared radiation. However, studies to date have utilized laser-based measurements to extract device performance and the responsivity of these detectors. As such, their performance under thermal radiation and spectral response has n...

متن کامل

Modeling of High Temperature GaN Quantum Dot Infrared Photodetectors

In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...

متن کامل

Impressive Reduction of Dark Current in InSb Infrared Photodetector to achieve High Temperature Performance

Infrared photo detectors have vast and promising applications in military,industrial and other fields. In this paper, we present a method for improving theperformance of an infrared photodetector based on an InSb substance. To achieve goodperformance at high temperatures, thermal noise and intrusive currents should bereduced. For this purpose, a five-layer hetero structu...

متن کامل

Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform.

In this paper, we demonstrate high optical quantum efficiency (90%) resonant-cavity-enhanced mid-infrared photodetectors fabricated monolithically on a silicon platform. High quality photoconductive polycrystalline PbTe film is thermally evaporated, oxygen-sensitized at room temperature and acts as the infrared absorber. The cavity-enhanced detector operates in the critical coupling regime and ...

متن کامل

Resonant cavity enhancement of polycrystalline PbTe films for IR detectors on Si-ROICs

In this paper, we demonstrate high optical quantum efficiency (90%) resonant-cavity-enhanced mid-infrared photodetectors fabricated monolithically on a silicon platform. High quality photoconductive polycrystalline PbTe film is thermally evaporated, oxygen-sensitized at room temperature and acts as the infrared absorber. The cavity-enhanced detector operates in the critical coupling regime and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017